
PACKAGING RUST
FOR DEBIAN, BUT ALSO OTHERS TOO

Angus Lees < >gus@inodes.org

mailto:gus@inodes.org

THE RUST TOOLCHAIN
rustc and rustdoc (from rust-lang.org)
cargo
Libraries (crates) - written in Rust
The application you actually wanted - written in Rust

PACKAGING 101
A BRIEF INTRODUCTION

Goal: Create some metadata so the packaging system
knows how to a) bundle up the software and b) make it

easily installable.

Most distros[1] separate the "build" and the "install" steps
so everyone can re-use the same generated artifacts.

[1] Notably not Gentoo or other "source-based" distros.

PACKAGING 101
THE PROCESS

Upstream source Add packaging
metadata "Source" package

Build step
(dpkgbuildpackage)

"Binary"
package(s)

Distribute
everywhere

Install step
(aptget install)

Usable software.
Profit.

Humans

Robots
Other packages
(builddeps)

Other packages
(dependencies)

PACKAGING 101
THE RULES

License(s) must meet Debian Free Software Guidelines
Must not use the network during build
"Vendoring" sources is bad

hides them from security-team
duplication wastes resources

Must be able to be rebuilt using packages in the archive
Must be built on native architecture (no cross-compiling)

These last two are temporarily ignored during
"bootstrapping" but result doesn't go into archive

RUSTC AND FRIENDS
This is in pretty good shape right now (for amd64)
Looks a lot like a regular upstream project

Source .tar.gz releases, signed
rustc requires rustc to build, but this isn't unique

Already in Debian unstable:

Debian packaging maintained by a small team through

Todo: cross compiling, easier bootstrap

https://packages.debian.org/sid/rustc

http://anonscm.debian.org/cgit/pkg-rust/rust.git/

https://packages.debian.org/sid/rustc
http://anonscm.debian.org/cgit/pkg-rust/rust.git/

CIRCULAR BUILD-DEP ON RUSTC
Currently handled by bundling the pre-built rustc
stage0 blob with packaging metadata

Works, but not great:

Large opaque binary makes people uneasy
Won't scale to many architectures (sheer size)

Ideal future: Build rustc from itself

First architecture from pre-built blob
All other architectures cross-compiled
Future versions from existing rustc package
Lots of blockers to address first

DIFFERENCES VS MAKE INSTALL
Separate binary packages produced:

rustc
rust-gdb, rust-lldb
rust-doc
libstd-rust-dev
libstd-rust-1bf6e69c

Split mostly to support (future) cross-compilation

libstd-rust-dev for target arch
libstd-rust-xxx can be co-installed for each arch

DIFFERENCES VS MAKE INSTALL
Run-time dylibs (libstd-rust-xxx) installed into
regular ld.so path:
/usr/lib/x86_64-linux-gnu/lib*.so

Compile-time dylibs/rlibs (libstd-rust-dev) installed
into:
/usr/lib/rustlib/x86_64-unknown-linux-
gnu/lib/lib*.{so,rlib}

dylibs (*.so) are symlinks back to run-time dylibs

PATCHES APPLIED
src/llvm/* removed (not needed)
jquery source added
rust-{gdb,lldb} scripts rewritten to hardcode paths
configure/Makefile patch to pass
CFLAGS/LDFLAGS down to build commands
rustc/rustdoc executables linked with -Wl,-
z,relro

rustc patch to add -Wl,-soname=filename when
linking
Documentation post-processed to use local icon/logos

RUSTC OUSTANDING ISSUES
Are we allowed to call it rustc?
Only amd64,i386 architectures at this time
"i386" arch package doesn't work on pentium (but does
work on i686)
Cross compilation not actually possible yet

mostly because LLVM packages aren't ready

CARGO
Packaging is a bit crude, but works
Already in Debian unstable:
https://packages.debian.org/sid/cargo

https://packages.debian.org/sid/cargo

CARGO PACKAGE BUILD PROCESS
Crate dependencies bundled and shipped along with
cargo source package
A snapshot of crates.io-index is bundled and shipped
along with cargo source package
Uses a python script (from Bitrig) to build stage0 cargo
(without using cargo)
Generates .cargo/config to point to bundled registry
and crates
Creates a fake temporary git repo for index
Points CARGO_HOME at an empty directory
Finally run regular cargo configure/make

PATCHES APPLIED
Relax missing_docs lint in aho-corasick
Fix relative paths in numerous bundled Cargo.tomls
Remove cargo's dev-dependencies to prevent
unnecessary attempted download

CARGO-USING LIBRARIES
Some early exploratory work, but mostly ideas so far
Probably looks like Debian go-lang packages:

Library source installed into a central directory
Application builds pick up source from there

Lots of issues still being worked on. See in
the "Perfecting Rust Packaging - The Plan" thread on

Eg: Packaging from crates.io vs upstream repos
Overriding crate paths vs overriding cargo index

my recent post

internals.rust-lang.org

https://internals.rust-lang.org/t/perfecting-rust-packaging-the-plan/2767/26?u=gus
https://internals.rust-lang.org/

CARGO-USING LIBRARIES (DYLIBS)
Can support dylibs using tight package dependencies on
librust-xxx

Need to be rebuilt following every compiler release
Will only do this if forced (compiler plugins?)

CARGO-USING APPLICATIONS
Once the libraries are solved, this should be easy!
Run cargo build --release, copy the executable
into the right directory
Result will be an executable with no run-time
dependencies on Rust crates (may require non-Rust libs)
Need to be rebuilt following a Rust library security update

THE LAST SLIDE

#debian-rust on OFTC IRC network

Packaging git repos:

Applied patches are in */debian/patches/

Questions?

pkg-rust-maintainers@lists.alioth.debian.org
https://wiki.debian.org/Teams/RustPackaging

http://anonscm.debian.org/cgit/pkg-
rust/

mailto:pkg-rust-maintainers@lists.alioth.debian.org
https://wiki.debian.org/Teams/RustPackaging
http://anonscm.debian.org/cgit/pkg-rust/

